产品展示
PRODUCT DISPLAY
行业资讯您现在的位置:首页 > 行业资讯 > 12月Nature杂志不得不看的重磅级亮点研究
12月Nature杂志不得不看的重磅级亮点研究
  • 发布日期:2018-12-28      浏览次数:238
    • 时光总是会在不经意间匆匆划过,不知不觉12月份即将结束,在即将过去的12月里Nature杂志又有哪些亮点研究值得学习呢?小编对此进行了整理,与大家一起学习。

      【1】Nature:重磅!科学家成功揭开多重耐药细菌躲避机体狙杀的伪装策略

      doi:10.1038/s41586-018-0730-x

      近日,一项刊登在国际杂志Nature上的研究报告中,来自蒂宾根大学等机构的科学家们在解析多重耐药病原体的研究上取得重大突破,文章中,研究者解析了一种此前未知蛋白的结构和功能,诸如金黄色葡萄球菌等病原体能利用这种蛋白作为一种魔术斗篷保护自身免于机体免疫系统的杀灭作用。

      诸如金黄色葡萄球菌等病原体引发的感染在全球每年会导致很多人死亡,而对抗生素甲氧西林耐药的金黄色葡萄球菌(MRSA)在医院尤其常见,11月初发表的一篇研究报告中,研究人员就表示,仅2015年在欧洲就有大约67万人感染了多重耐药性的病原体,而且3。3万人因感染而死亡。

      【2】Nature:重大突破!重编程机体的能量途径来促进肾脏损伤的自我修复!

      doi:10.1038/s41586-018-0749-z

      近日,一项刊登在国际杂志Nature上的研究报告中,来自凯斯西储大学医学院等机构的科学家们通过研究发现了一种新型通路或能增强损伤肾脏的修复功能;相关研究结果或能帮助研究人员开发新型药物来阻断或逆转人类严重肾脏疾病的进展,同时也有望应用于开发治疗诸如心脏、肝脏等器官的病变。

      肾脏能够过滤机体血液中的废弃物和多余的液体,并且通过尿液排出不安全的分子,当肾脏发生损伤或失去功能时,废弃物就会堆积并潜在诱发患者出现多种疾病症状。研究人员所发现的新型通路包括重编程机体自身的代谢路径来恢复损伤肾脏的功能,正常情况下,一种名为糖酵解的过程能将食物中的葡萄糖转化称为能量,从而维持机体正常工作,但本文研究中研究者发现,当组织受损后,机体就会将这一过程转变成为修复损伤细胞的过程。

      【3】Nature:改写教科书!中国科学家阐明保护卵母细胞独特表观基因组的新型机制!

      doi:10.1038/s41586-018-0751-5

      在哺乳动物中,雌性机体的卵母细胞数量往往有限,卵母细胞拥有一套独特的表观基因组,其甲基化程度相当于精子的一半,而且卵母细胞也是一种分化程度最高的体细胞;截至目前为止,研究人员并不清楚这种独特的DNA甲基化的调控模式以及其相关的功能。

      近日,一项刊登在国际杂志Nature上的研究报告中,来自中国科学院生物物理研究所朱冰教授的研究团队通过研究就鉴别出了一种新型的DNA甲基化调节子—Stella,其在体细胞中的异位过量表达会通过干扰DNA甲基化调节子UHRF1的功能来诱发全面的DNA去甲基化作用。

      【4】Nature:科学家们在先天性免疫研究领域获重大发现 解析NLRP3蛋白的新型作用机制

      doi:10.1038/s41586-018-0761-3

      近日,一项刊登在国际杂志Nature上的研究报告中,来自德州大学西南医学中心(UT Southwestern Medical Center)的科学家们通过研究揭开了先天性免疫研究领域长期困扰科学家的一个问题。长期以来,科学家们一直想知道名为NLRP3的蛋白质是如何促进机体产生炎症来响应一系列看似不相关的刺激的。

      研究者Chen表示,此前研究中我们鉴别出了一种名为cGAS的特殊DNA感知酶类(循环GMP-AMP合酶),其能够发出警报来开启细胞内的先天性免疫反应。这项研究中,研究人员调查了一种涉及NLRP3蛋白的免疫系统途径,NLRP3对于细胞中炎性小体的组装非常重要,当对包括毒素及胆固醇结晶体等一系列有毒物质产生反应后,炎性小体就会诱发炎性细胞死亡的通路,同时炎性小体还会增加机体产生免疫系统特殊物质,比如白细胞介素等,其会帮助产生机体的免疫反应。

      【5】Nature:利用细胞替换疗法治疗1型糖尿病取得重大进展!胞外基质组分决定着胰腺祖细胞的命运

      doi:10.1038/s41586-018-0762-2

      在一项新的研究中,来自丹麦哥本哈根大学的研究人员发现了决定胰腺中未成熟细胞---即胰腺祖细胞(pancreatic progenitor)---命运的信号。他们发现在发育中的胰腺内部,这些胰腺祖细胞是高度迁移性的,它们的命运受到它们的周围环境的影响:接触特定的胞外基质组分决定着它们的最终命运。这一突破性发现将有助于利用干细胞产生的胰岛β细胞治疗1型糖尿病。相关研究结果于2018年11月28日在线发表在Nature期刊上。

      祖细胞类似于干细胞,这是因为它们能够自我更新和分化为成熟的细胞类型。然而,相比于干细胞,它们的自我更新能力通常是有限的。在器官形成期间,祖细胞的动态行为使得很难研究它们。为了克服这个障碍,这些研究人员将源自人干细胞的胰腺祖细胞接种在散布着不同的基质蛋白的载玻片上。通过这种方法,他们能够研究每个胰腺祖细胞在不影响相邻细胞的情形下如何对它的周围环境作出反应。令人吃惊的是,他们发现不同胞外基质组分之间的相互作用改变胰腺祖细胞内的机械力。这些机械力是由位于细胞外的胞外基质和位于细胞内部的肌动蛋白细胞骨架之间的相互作用产生的。

      【6】Nature:与阿尔茨海默病相关的β-淀粉样蛋白很可能能够在人际传播

      doi:10.1038/s41586-018-0790-y

      在一项新的研究中,英国伦敦大学学院朊病毒疾病研究所的John Collinge教授及其团队将一种受到β-淀粉样蛋白(一种与阿尔茨海默病有关的蛋白)污染的生长激素注射到小鼠大脑中,观察到β-淀粉样蛋白在大脑中沉着。这一结果支持这样的一个假设:在罕见的情形下,来自污染的β-淀粉样蛋白可能能够在人际传播,但是这并不意味着这种蛋白具有传染性。

      在2015年的一项研究中,Collinge团队通过研究8名年龄在36至51岁之间的医源性克雅氏病(iatrogenic CJD)患者的大脑,其中这些患者在幼年时接受从数千名尸体的垂体中提取出的生长激素注射,发现7人的大脑中都含有与阿尔茨海默病有关的β-淀粉样蛋白沉着物,而且4人的大脑具有较高的β-淀粉样蛋白沉着物水平。

      【7】Nature:科学家成功捕获恶性疟原虫感染红细胞的关键复合体结构 有望开发出新型疟疾疫苗

      doi:10.1038/s41586-018-0779-6

      近日,一项刊登在国际杂志Nature上的研究报告中,来自霍华德休斯敦医学院的科学家们通过研究成功观察到恶性疟原虫进入并感染人类红细胞所使用的特殊关键分子的清晰结构,相关研究结果或能帮助研究人员设计新型疫苗来抵御流行性疟原虫的感染。本文研究具有重大意义,因为疟原虫每年在全球会引发50多万人死亡,而且目前并没有有效的疫苗来抵御疟疾的感染。

      利用获得诺贝尔奖的低温电子显微镜技术,科学家们获得了寄生虫诱发感染的关键部位的三维结构,这种关键部位是由疟原虫三种特殊蛋白质组成的复合体,即Rh5, CyRPA和Ripr三种蛋白,其能互相协作来解开并进入机体的红细胞。研究者表示,这种复合体对于疟原虫进入细胞并诱发感染非常重要,基于获得的研究信息,研究人员或许就能以一种更好的方法来靶向作用疟原虫的感染,因为如今他们已经阐明了疟原虫感染红细胞的分子机制。

      【8】Nature:存在50年的谜团终破解!鉴定出阻止难产的组氨酸甲基转移酶

      doi:10.1038/s41586-018-0821-8

      自20世纪60年代以来,科学家们就已知道,肌肉中的肌动蛋白发生了一种修饰,特别是在锻炼之后。然而,科学家们还不知道这种修饰是如何发生的,甚至不知道为何会发生。

      在一项新的研究中,来自美国斯坦福大学的研究人员不仅发现这种修饰是通过一种称为SETD3的酶进行的,而且还发现这种酶可能有助于在分娩期间协调子宫中的肌肉收缩。更广泛地说,SETD3也可能是在一系列人类肌肉组织疾病中迄今为止未被鉴定出的因子。相关研究结果于2018年12月10日在线发表在Nature期刊上。

      肌肉细胞中发生的这种修饰涉及肌动蛋白。肌动蛋白在一定程度上构成在肌肉内收缩的细丝。肌动蛋白中的某些组氨酸发生甲基化修饰。由于这种活性,即将甲基转移到组氨酸上,这种新鉴定出的SETD3被称为组氨酸甲基转移酶(histidine methyltransferase)。

      【9】Nature:让蛋白像DNA那样配对形成双螺旋结构

      doi:10.1038/s41586-018-0802-y

      如今,在一项新的研究中,来自美国由华盛顿大学医学院的研究人员在实验室中蛋白经设计后能够地配对和结合在一起,就像DNA分子相互配对形成双螺旋一样。这种技术能够设计蛋白纳米机器以便潜在地协助诊断和治疗疾病,允许对细胞进行更加的操控并让它们执行各种其他任务。相关研究结果于2018年12月19日在线发表在Nature期刊上。

      研究者Zibo Chen表示,“对任何一台能够工作的机器来说,它的零部件必须地结合在一起。这种技术使得人们能够设计蛋白,并让它们严格按照人们的要求结合在一起。”在过去,对设计生物分子纳米机器感兴趣的科学家们经常使用DNA作为主要成分。这是因为DNA链结合在一起形成氢键从而产生DNA双螺旋结构,但前提是它们的序列是互补的。

      生物

    联系方式
    • 电话

      021-61920961/67610176

    • 手机

      13120725556

    在线客服